Genetika se zabývá dědičností a proměnlivostí organizmů. Dědičnost je jedním ze základních projevů života, proto se principy genetiky uplatňují u všeho živého. Porozumění genetice je zásadní pro pochopení toho, jak život funguje, ale také toho, jak s ním lze manipulovat.

Genetická informace uložená v nukleových kyselinách (např. DNA) umožňuje vznik proteinů (bílkovin). Proteiny pak zajišťují nepřeberné množství funkcí v organizmech a zodpovídají za vznik jejich znaků.

Tipy k procvičování

Základní souvislosti (s důrazem na propojení s proteosyntézou a funkcí proteinů v těle) jsou přibližovány ve cvičení příběhy a v lehkých/středních obtížnostech některých rozhodovaček (dědičnost a rozmnožování, nukleové kyseliny, proteosyntéza, typy znaků, dědičné choroby). Výše odkazovaná cvičení jsou vhodná pro 2. stupeň ZŠ či nižší gymnázium.

Zbylá cvičení jsou vhodná pro vyšší gymnázium/střední školy, více do hloubky přibližují např. proteosyntézu, typy dědičnosti, křížení či interakce alel.

Dědičnost a rozmnožování

Přejít ke cvičením na toto téma »

Genetika je věda, která se zabývá dědičností. Dědičnost je schopnost předávat „návod“ na určité znaky potomkům. Znaky se mohou týkat vnější i vnitřní podoby těla, ale i jeho funkce.

„Návodem“ na vytvoření znaků je genetická informaceDNA (deoxyribonukleové kyselině). U bakterií je DNA volně v cytosolu, u eukaryotních organizmů (např. hub, rostlin, živočichů včetně člověka) se nachází především v jádře buněk. Je rozčleněná na menší části – chromozomy, které se předávají potomkům při rozmnožování.

od buňky k DNA

Při nepohlavním rozmnožování (např. dělení bakterií, vegetativním množení rostlin) dojde ke zkopírování DNA: potomci jsou klonem rodičů, jsou s nimi geneticky shodní. V rámci pohlavního rozmnožování (např. člověka) potomek získá nové kombinace DNA od obou rodičů a geneticky se od nich liší. Při rozmnožování obratlovců potomek získá ½ genetické informace od každého z rodičů.

Člověk má ve většině tělních buněk 46 chromozomů: 23 od otce, 23 od matky. Jeden pár z nich jsou chromozomy pohlavní: ženy mají pohlavní chromozomy XX, muži XY. Žena vajíčkem předává chromozom X, muž spermií X, nebo Y. Počet chromozomů organizmu nevypovídá o jeho složitosti (např. kiwi má 174 chromozomů, což neznamená, že je „pokročilejší“ než člověk).

Nukleové kyseliny, proteosyntéza

Přejít ke cvičením na toto téma »

DNA je složitá látka, která nese genetickou informaci. Skládá se obvykle ze dvou spojených vláken, každé vlákno bývá složeno ze 4 typů nukleotidů. Na základě informace „zapsané“ v pořadí nukleotidů si všechny živé organizmy tvoří proteiny (bílkoviny). Proteiny mohou být stavebními látkami, podílet se na řízení těla (hormony), urychlování chemických reakcí (enzymy), imunitě (imunoglobuliny), transportu látek aj. Proteiny jsou zodpovědné za vytváření znaků organizmů.

Tvorba proteinů na základě informace z DNA

Tvorba proteinů (proteosyntéza) uvnitř buněk probíhá tak, že informace v DNA se přepíše do mRNA (toto se označuje jako transkripce). Molekula mRNA putuje do ribozomu, kde se na základě obsažené informace sestaví nový protein z aminokyselin (translace). Člověk aminokyseliny získává štěpením proteinů přijatých potravou, některé si dokáže vytvořit z jiných látek. Proteiny se v živých organizmech tvoří prakticky neustále.

Platí tedy vztah: DNA → protein → znak.

od DNA ke znaku

Například: z potravy (1) získáme aminokyseliny (2). „Návod“ na tvorbu proteinů obsažený v DNA (3) se přepíše do mRNA (4). Na základě této informace se z aminokyselin vytvoří vlastní proteiny (5) důležité pro funkci svalů (6). Díky tomu se můžeme hýbat (7) – to je výsledný znak.

Stavba DNA

Nukleotidy v DNA obsahují část pocházející z molekuly sacharidu (deoxy-D-ribosa), zbytek kyseliny fosforečné a dusíkatou bázi. Podle přítomné dusíkaté báze se nukleotidy označují A (obsahuje adenin), T (obsahuje thymin), G (obsahuje guanin), C (obsahuje cytosin). Dvojice A-G a C-T jsou k sobě komplementární, nacházejí se v rámci vláken naproti sobě a jsou spojené vodíkovými můstky.

RNA

RNA je zpravidla jednovláknová. Nukleotidy v ní obsahují sacharid D-ribosu. Součástí RNA jsou nukleotidy A, G, C, místo thyminu (T) obsahuje uracil (U). Messenger RNA (mRNA) je daleko méně stabilní než DNA, její životnost se pohybuje v řádu minut až hodin. Mezi další typy RNA patří tRNA (nese aminokyseliny na místo proteosyntézy) a rRNA (tvoří ribozomy).

Genetický kód

V rámci proteosyntézy se uplatňuje genetický kód: určitá trojice nukleotidů v mRNA (triplet, kodon) kóduje zařazení určité aminokyseliny do řetězce proteinu. Kodon AUG zahajuje translaci (iniciační/start kodon), kodony UAG, UAA, UGA (terminační/stop kodony) translaci zastavují.

Projevy a dědičnost znaků, křížení

Přejít ke cvičením na toto téma »

Gen je úsek DNA, který obvykle kóduje určitý protein (nebo proteiny). Jako genotyp se označuje soubor genů organizmu. Geny se mohou projevovat různým způsobem např. v závislosti na prostředí. Soubor pozorovatelných znaků organizmu je fenotyp.

Alely

Alela je konkrétní forma genu. U člověka se zpravidla dvě různé alely nacházejí v určitých místech homologických chromozomů (od otce a od matky). Alela může být:

  • dominantní – Obvykle se značí velkým písmenem (např. B). Může překrývat projevy recesivní alely.
  • recesivní – Obvykle se značí malým písmenem (např. b). Může být potlačena dominantní alelou.

Homozygot pro daný gen obsahuje dvě stejné alely (dominantní – BB, nebo recesivní – bb). Heterozygot má dvě různé alely (Bb).

Základní vztahy alel

Mezi základní vztahy alel patří:

  • dominance
    • Při úplné dominanci se u heterozygota projeví jen dominantní alela. Tedy např. pokud B zodpovídá za červenou barvu květu a b za žlutou, dominantní homozygoti (BB) a heterozygoti (Bb) pokvetou červeně, recesivní homozygoti (bb) pokvetou žlutě.
    • Při neúplné dominanci se částečně projeví i recesivní alela. Pokud bychom neúplnou dominanci vztáhli na příklad výše, heterozygoti (Bb) by kvetli oranžově.
  • recesivita – Doplňuje dominanci (je jejím „opakem“).
  • kodominance – Obě alely jsou dominantní a projevují se nezávisle na sobě, tento vztah je typický pro vznik krevních skupin člověka. Např. alely \mathrm{I^A I^B} dají vzniknout krevní skupině AB.

Křížení (hybridizaci) a vznikající kombinace alel je možné znázorňovat pomocí kombinačních (Punnettových) čtverců (vizte dále). V záhlaví jsou alely jednoho rodiče, v 1. sloupci alely druhého rodiče.

Mendelovy zákony

Za zakladatele genetiky je považován Johann Gregor Mendel, který zkoumal dědičnost zejména na rostlinách hrachu setého. Znaky, které pozoroval, byly ovlivněny jedním genem (monogenní dědičnost). Na základě jeho práce byly formulovány Mendelovy zákony:

  • Křížením dominantního (AA) a recesivního (aa) homozygota vznikne fenotypově (a genotypově) jednotné potomstvo. Všichni potomci z příkladu níže by měli stejné alely Aa, v rámci dominance by se projevila alela A (všichni potomci by měli růžové květy).

  • Křížením heterozygotů (Aa) vznikne potomstvo v určitém fenotypovém (a genotypovém) štěpném poměru. Co se týče příkladu níže, u 75 % potomků by byla přítomna dominantní alela (AA, Aa), u 25 % jen recesivní (aa). Tedy 75 % potomků by kvetlo růžově (dominantní znak), 25 % bíle. Genotypový štěpný poměr by byl 1 : 2 : 1 (25 % AA, 50 % Aa, 25 % aa).

  • Alely se rozdělují do pohlavních buněk nezávisle na sobě a mohou se nezávisle kombinovat. Kdyby na příkladu níže alely A/a ovlivňovaly tvar semen a B/b jejich barvu, vznikly by různé kombinace tvarů a barev semen.

Gonozomální dědičnost

Gonozomální (pohlavně vázaná) dědičnost se týká pohlavních chromozomů. Člověk má standardně pohlavní chromozomy XX (žena), nebo XY (muž). Geny na chromozomu Y převážně neodpovídají genům přítomným na chromozomu X. Recesivní i dominantní alely na chromozomu Y se tedy projeví prakticky vždy.

Typy znaků, dědičné choroby

Přejít ke cvičením na toto téma »

Typy a ovlivňování dědičných znaků

Dědičné znaky mohou být ovlivněné jediným genem (to je konkrétní úsek DNA), často ale bývají podmíněné více geny. Na tom, jaké znaky se u jedince projeví, se do značné míry podílí prostředí. Znaky mohou být:

  • kvalitativní – Nelze je vyjádřit číslem, např. barva očí, vlasů, krevní skupina.
  • kvantitativní – Lze je změřit a vyjádřit číslem, např. výška či hmotnost.

Soubor genů organizmu se označuje jako genotyp. Souhrn pozorovatelných znaků (vlastností), na jejichž projevu se podílelo i prostředí, se označuje jako fenotyp.

Podstata genetických chorob

Genetické choroby souvisejí se změnami chromozomů či mutacemi. Tyto odchylky vedou k tomu, že určité proteiny v těle nefungují správně. Některé genetické změny zapříčiní projev onemocnění téměř jistě, jindy mohou být změny DNA rizikovým faktorem. Genetické choroby se dědí podle určitých pravidel. Jejich pravděpodobnému přenosu je možné zabránit např. umělým oplodněním a implantací zdravého embrya.

Pravděpodobnost nově vzniklých genetických vad stoupá s postupujícím věkem rodičů. Genetické poruchy je možné zjišťovat např. z buněk z odebrané plodové vody.

Downův syndrom
a – Downův syndrom
rozštěp
b – rozštěp
zkouška barvocitu
c – zkouška
barvocitu
hemofilie
d – hemofilie
krevní sraženina
e – krevní sraženina
potraviny s laktózou
f – potraviny
s laktózou

Příklady genetických chorob

  • Downův syndrom (ilustruje obrázek a) – Podmíněn trizomií 21. chromozomu (tyto chromozomy jsou 3 místo 2), vede k opožděnému psychickému a fyzickému vývoji.
  • rozštěpy (b, např. patra, rtu…)
  • poruchy barvocitu (c) – Nejčastěji vedou k poruchám vnímání červené a zelené barvy.
  • hemofilie (d) – Vede ke snížené srážlivosti krve.
  • leidenská mutace – Vede ke zvýšené srážlivosti krve a neslučuje se s užíváním hormonální antikoncepce. Častá v Evropě.
  • fenylketonurie – V těle se hromadí aminokyselina fenylalanin, kterou nelze zpracovat.
  • některé typy intolerance laktózy (mléčného cukru, f)

Praktické využití genetiky

Přejít ke cvičením na toto téma »

Umělý výběr a křížení

Lidé již před tisíci lety díky umělému výběru a záměrnému křížení získávali organizmy s určitými znaky. Takto vznikly prakticky všechny užitkové rostliny a živočichové.

Mutace

Jako mutace se označují změny DNA či chromozomů. Mutace nemusí vést ke změně znaku, mohou se ale projevit i pozitivně či negativně. Vznik mutací je mj. podstatou genetických i dalších onemocnění. Mutace v přírodě vznikají nahodile (působením fyzikálních a chemických vlivů). Uměle lze mutace navodit např. UV zářením, rentgenovým zářením či působením určitých chemických látek.

Cílené úpravy DNA

DNA lze cíleně upravovat např. prostřednictvím metody CRISPR, do organizmu je možné též zavést geny jiného organizmu (vzniklý organizmus se označuje jako transgenní). Takto vznikají tzv. geneticky modifikované organizmy (GMO). Ty nesou takové genetické změny, které by obvykle samovolně nevznikly v přírodě.

  • Bakterie se geneticky modifikují často proto, aby dokázaly vytvářet určité látky (např. inzulin, různé enzymy).
  • GMO rostliny mohou mít zvýšenou odolnost, být odolné pesticidům, vytvářet si pesticidy vlastní nebo např. produkovat určité látky (příkladem je β-karoten u tzv. zlaté rýže).
  • Živočichové se geneticky modifikují zejména za účely výzkumu (výjimkou je např. losos AquAdvantage, prase GalSafe či svítící akvarijní rybky GloFish).
  • Eticky nevyjasněnou záležitostí je genová editace lidských embryí.

Využití genetiky

Genetika má také zásadní uplatnění při zkoumání vývojových vztahů organizmů či jejich identifikaci (např. určování rodičovství, pachatele v kriminalistice, patogenu v odebraném vzorku). Genetika zkoumá, jak geny fungují a jaké proteiny na základě nich vznikají. Čím dál větší roli hraje genetika ve zdravotnictví (prevence a léčba dědičných chorob, mRNA vakcíny, v budoucnu pravděpodobně genová terapie).

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence