Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Fyzika
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
WVR
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

WVR
umime.to/WVR

Nastavení cvičení


Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/WVR

Rovnice kontinuity

U proudění tekutin definujeme tzv. objemový průtok Q_V. Je to objem tekutiny, který proteče trubkou za jednotku času. Jednotkou je tedy m³/s a platí:

Q_V=\frac{V}{t}

Příklad: ropovod

  • Jaký byl průtok ropovodem, pokud za 1 minutu proteklo 30 m³ ropy?
  • Známe V i t.
  • Čas t není v základních jendotkách, musíme jej tedy převést na sekundy t= 60\,\mathrm s
  • Dosadíme do Q_V=V/t
  • Q_V=30/ 60 \,\mathrm {m^3/s}=0{,}5 \,\mathrm {m^3/s}.
  • Průtok je 0{,}5 \,\mathrm {m^3/s} ropy.

Objem V je ale roven součinu průřezu trubice S a posunu kapaliny o dráhu s. Po dosazení máme Q_V=\frac{S\cdot s}{t}.

Víme přitom, že \frac{s}{t} je klasická definice rychlosti, tedy i rychlosti proudění v. Pak můžeme průtok zapsat ekvivalentní rovnicí:

Q_V=S\cdot v

Příklad: Lipno

  • Jaký průtok vody míří na turbínu vodní elektrárny Lipno I, pokud v její 15 m² přívodní šachtě proudí voda rychlostí 2 m/s?
  • Známe S i v a to v základních jednotkách.
  • Stačí tedy dosadit dosadit do Q_V=S\cdot v
  • Q_V=15\cdot 2 \,\mathrm {m^3/s}=30 \,\mathrm {m^3/s}
  • Průtok je 30 \,\mathrm {m^3/s}.

Protože jsou kapaliny nestlačitelné, musí být průtok Q_V v uzavřeném plném potrubí všude stejný (jinak by se někde musela hromadit).

Pokud tedy porovnáme dvě místa (Q_{V{,}1}=Q_{V{,}2}) a dosadíme za jednotlivé průtoky, vznikne známý vzorec rovnice kontinuity:

S_1\cdot v_1=S_2\cdot v_2

Příklad: stále stejně tlusté potrubí

  • Jak se mění rychlost ideální kapaliny při průchodu stále stejně tlustým potrubím?
  • Nabízí se odpověď „všude stejná“. Ověříme to.
  • Pro dvě místa v trubici platí S_1\cdot v_1=S_2\cdot v_2.
  • Oba průřezy S_1 i S_2 jsou stejné, označme je tedy jednotně jako S.
  • Máme S\cdot v_1=S\cdot v_2. V této rovnici můžeme krátit S.
  • Dostaneme v_1=v_2. Tedy i rychlosti musí být stejné.

Příklad: přechod potrubí na třikrát větší průřez

  • Jak se změní rychlost ideální kapaliny při rozšíření potrubí na trojnásobný průřez?
  • Nejprve přiřadíme jednotlivým místům v potrubí označení: užší část bude (1) a širší (2).
  • Platí S_1\cdot v_1=S_2\cdot v_2.
  • Víme že S_2=3\cdot S_1. Dosadíme to do rovnice.
  • S_1\cdot v_1=3\cdot S_1\cdot v_2. Můžeme krátit S_1.
  • Dostaneme v_1=3\cdot v_2. Hledáme ale rychlost v_2.
  • Dělíme tedy 3 a dostaneme v_2=\frac{1}{3} v_1.
  • Rychlost tedy bude třetinová.

Zajímavosti

  • Přibližně platí i pro volně proudící kapalinu (řeka a její koryto).
  • Někdy přibližně platí pro plyny (jsou stlačitelné).
  • Obdobné rovnice kontinuity platí například i v elektřině (1. Kirchhoffův zákon).
  • Rovnice V=S\cdot s je spolehlivá jen pro malé s (mohl by se změnit průměr trubice). Naštěstí rovnice Q_V=S\cdot v je už platná obecně.
Zavřít

Rovnice kontinuity (lehké)

Vyřešeno:

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence