Úvod do chemických reakcí

Přejít ke cvičením na toto téma »

Chemická reakce je děj, při němž dochází ke změnám chemických vazeb. Látky vstupující do reakce (výchozí látky, edukty) se mění na produkty. Všechny látky účastnící se chemické reakce se nazývají reaktanty.

Chemické rovnice

Průběh chemické reakce se zapisuje chemickou rovnicí. Jednotlivé zúčastněné látky se oddělují znaménkem „+“, mezi výchozí látky a produkty reakce se zapisuje šipka (⟶).

\mathrm{C + O_2 \longrightarrow CO_2}

Rovnice výše lze přečíst takto: uhlík reaguje s dvouatomovou molekulou kyslíku (kyslíkem), vzniká oxid uhličitý.

Počet částic jednotlivých prvků ve výchozích látkách a produktech je stejný, platí zákon zachování hmotnosti. To se vyjadřuje vyčíslením rovnice, uváděním tzv. stechiometrických koeficientů (píší se jako přirozená čísla před vzorce či značky prvků, 1 se neuvádí).

\mathrm{2\,C + O_2 \longrightarrow 2\,CO}

Rovnice výše je vyrovnaná tak, aby se ve výchozích látkách i produktech nacházely dva atomy C a dva atomy O: Dva mol („díly“) uhlíku reagují s kyslíkem, vznikají dva mol oxidu uhelnatého.

Reakce podle přijatého/vydaného tepla

Podle přijatého/vydaného tepla se reakce dělí na exotermické (teplo se uvolňuje) a endotermické (teplo se spotřebovává).

Ovlivňování rychlosti reakcí

Rychlost reakce ovlivňují následující faktory (čím větší míra faktoru, tím zpravidla rychlejší reakce):

  • koncentrace výchozích látek
  • teplota
  • velikost povrchu reaktantů
  • přítomnost katalyzátorů

Katalyzátory jsou látky, které urychlují chemické reakce. Snižují aktivační energii a tvořením meziproduktů „vedou“ reakci jinou cestou. Vystupují z reakce v původní podobě. Katalyzátory se typicky využívají ve spojení se spalovacími motory, snižují množství vypouštěných jedovatých látek. V živých organizmech jako katalyzátory fungují enzymy.

Vyčíslování chemických rovnic

Přejít ke cvičením na toto téma »

V rámci chemických reakcí z výchozích látek vznikají produkty. Chemické reakce se popisují chemickými rovnicemi.

Zákon zachování hmotnosti

V rámci chemických reakcí dochází ke změnám chemických vazeb mezi částicemi. Částice samotné se ale nemění, jen se jinak přeskupí a navzájem navážou. Platí tedy zákon zachování hmotnosti: počet a typ částic v rámci výchozích látek odpovídá počtu a typu částic v produktech. Stejně tak hmotnost výchozích látek musí odpovídat hmotnosti produktů.

Vyčíslování rovnic

Mějme rovnici: \mathrm{Fe + O_2 \longrightarrow Fe_2O_3}

Počet částic ve výchozích látkách Počet částic v produktech
1 atom železa (Fe)
2 atomy kyslíku (O)
2 atomy železa (Fe)
3 atomy kyslíku (O)

Zákon zachování hmotnosti výše není dodržen, rovnici je potřeba vyrovnat (vyčíslit) tak, aby si počty částic ve výchozích látkách a produktech odpovídaly. To se učiní přidáním tzv. stechiometrických koeficientů. Stechiometrické koeficienty jsou čísla, která se píší před vzorce určitých látek v reakci. Popisují, v jakém poměru spolu určité látky reagují. Je-li koeficient 1, nepíše se.

Vyrovnaná rovnice bude vypadat takto: \mathrm{4\;Fe + 3\;O_2 \longrightarrow 2\;Fe_2O_3}

Počet částic ve výchozích látkách Počet částic v produktech
4 atomy železa (Fe)
6 atomů kyslíku (O)
4 atomy železa (Fe)
6 atomů kyslíku (O)

Rovnici je pak možné přečíst takto: 4 mol („díly“) železa reagují se 3 mol dvouatomových molekul kyslíku, vznikají 2 mol oxidu železitého.

Při vyrovnávání rovnic nelze zasahovat do samotných vzorců látek. Mohlo by tak dojít ke změně na vzorec zcela jiné (či nereálné) látky. Např. ze vzorce oxidu železitého výše nelze udělat vzorec neexistujícího „oxidu železičitého“ ().

Jak vyčíslovat rovnice

Při kompletním vyčíslování neredoxních rovnic je nutné postupně vyrovnávat bilance jednotlivých prvků, případně si sestavit soustavu matematických rovnic.

Při vyčíslování redoxních rovnic lze vycházet z toho, že se mezi atomy myšleně přesune určité množství elektronů. Mějme nevyčíslenou reakci:
\mathrm{\overset{0}{P} + {H}\overset{V}{I}{O_3} + H_2O \longrightarrow {H_3}\overset{V}{P}{O_4} + H\overset{-I}{I}}

V rámci ní probíhají následující poloreakce. Aby bylo zajištěno zachování náboje, použijeme křížové pravidlo:

oxidace: \mathrm{\overset{0}{P} \longrightarrow \overset{V}{P} … 5\,e^-}
redukce: \mathrm{\overset{V}{I} \longrightarrow \overset{-I}{I} … 6\,e^-}
\overset{\phantom{I}}{6}
\overset{\phantom{I}}{5}

Získaná čísla zapíšeme před látky obsahující daný prvek: \mathrm{6\,P + 5\,HIO_3 + H_2O \longrightarrow 6\,H_3PO_4 + 5\,HI}

Nakonec rovnici dovyčíslíme, v tomto případě přidáním koeficientu ke vzorci vody: \mathrm{6\,P + 5\,HIO_3 + 9\,H_2O \longrightarrow 6\,H_3PO_4 + 5\,HI}

Při redoxních reakcích dochází ke změnám oxidačních čísel atomů zúčastněných látek.

Oxidační čísla

Při oxidačně-redukčních (redoxních) reakcích dochází ke změnám oxidačních čísel atomů. Oxidační číslo je formální (myšlený) náboj, který by částice měla, kdyby se všechny elektrony účastnící se jejích vazeb přiřadily elektronegativnějšímu atomu. Oxidační číslo se zapisuje římskou číslicí jako horní index za (či nad) značku prvku, běžně nabývá hodnot od −IV do VIII. Elektricky neutrální částice samostatného prvku mají oxidační číslo 0 (vzhledem ke stejné elektronegativitě jsou elektrony rovnoměrně rozděleny).

\mathrm{\overset{\tiny -IV}{C} \overset{\tiny I}{H_4}} – Atom uhlíku (C) v methanu má oxidační číslo −IV, atomy vodíku I.
\mathrm{\overset{\tiny IV}{C} \overset{\tiny -II}{O_2}} – Atom uhlíku (C) v oxidu uhličitém má oxidační číslo IV, atomy kyslíku −II.
\mathrm{\overset{\tiny 0}{O_2}} – Atomy kyslíku (O) jakožto samostatného prvku mají oxidační číslo 0.

znázornění výpočtu oxidačních čísel

Jinými slovy: čím více (záporně nabitých) elektronů k atomu formálně přiřadíme, tím menší má oxidační číslo.

Oxidační čísla a názvosloví

Oxidační čísla souvisejí s tím, v jakém vzájemném poměru se prvky (atomy) vyskytují v určitých molekulách. Koncovky vyjadřující oxidační čísla atomů se zahrnují např. do názvů halogenidů, oxidů a dalších sloučenin.

Oxidace a redukce

Při oxidaci se oxidační číslo zvětšuje, dochází k myšlenému odevzdávání elektronů (myšlený náboj se stává „více kladným“). Při redukci se oxidační číslo zmenšuje, dochází k myšlenému přijímání elektronů (myšlený náboj se stává „více záporným“).

Oxidace a redukce probíhají současně: zatímco jedna částice elektrony formálně odevzdá, jiná je musí formálně přijmout.

\mathrm{2\,\overset{\tiny 0}{Fe} + 3\,\overset{\tiny 0}{O_2} \longrightarrow 2\,\overset{\tiny III}{Fe_2} \overset{\tiny -II}{O_3}}

V rámci reakce výše probíhají tyto poloreakce:

\mathrm{\overset{\tiny 0}{Fe} ⟶ \overset{\tiny III}{Fe}} – Železo se oxiduje ze stavu 0 do stavu III.
\mathrm{\overset{\tiny 0}{O} ⟶ \overset{\tiny -II}{O}} – Kyslík se redukuje ze stavu 0 do stavu −II.

Oxidační a redukční činidla

  • Jako oxidační činidlo se označuje látka, která oxiduje jiné látky, sama se redukuje (typicky např. kyslík, manganistan draselný, chlor).
  • Redukční činidlo redukuje jinou látku, samo se oxiduje (např. vodík a jeho sloučeniny, alkalické kovy, oxid uhelnatý).
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence