Zrychlení

WEP
Zkopírovat krátkou adresu (umime.to/WEP)
Ukázat QR kód

umime.to/WEP


Stáhnout QR kód
Ukázat/skrýt shrnutí

Pokud se rychlost pohybu mění, charakterizuje tyto změny veličina jménem zrychlení. Značíme jej a a je to změna rychlosti za změnu času.

a=\frac{\Delta v}{ \Delta t }

Jednotkou zrychlení je \mathrm{m/s^2}.

Zejména v kinematice můžeme zrychlení brát jako změnu velikosti rychlosti. Pokud je stále stejné, jde o pohyb rovnoměrně zrychlený nebo pohyb rovnoměrně zpomalený.

Pro rychlost rovnoměrně zrychleného pohybu platí:

v=v_0+a\cdot t nebo jednodušeji v=a\cdot t (pokud je počáteční rychlost v_0 nulová)

Vztah pro dráhu je pak:

s=v_0t+\frac{1}{2}a t^2 nebo jednodušeji s=\frac{1}{2}a t^2 (pokud je počáteční rychlost v_0 nulová)

V případě rovnoměrně zpomaleného pohybu (rychlost se rovnoměrně snižuje), používáme obvykle vztahy v=v_0-a\cdot t pro rychlost a s=v_0t-\frac{1}{2}a t^2 pro dráhu.
Zjednodušené vztahy (v_0=0) v tomto případě nemají smysl, protože musíme mít z čeho zpomalovat.

Je i alternativa používat pro zpomalený pohyb stejné vztahy jako pro pohyb zrychlený a dosazovat záporné hodnoty zrychlení a. V následujících cvičeních ale není použita.


Přesnější definice zrychlení je změna vektoru rychlosti za změnu času.

\vec a=\frac{\Delta \vec v}{ \Delta \vec t }

Zrychlení je podle této definice nenulové i u rovnoměrného pohybu po kružnici a každého křivočarého pohybu (mění se směr vektoru rychlosti).

Souhrn mi pomohl
Souhrn mi nepomohl
Souhrn je skryt.

Rozhodovačka

Rychlé procvičování výběrem ze dvou možností.


Zrychlení  
Zobrazit souhrn tématu


Vpisování

Cvičení, ve kterém píšete odpověď na klávesnici.


Zrychlení  
Zobrazit souhrn tématu


NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence