Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Mechanická energie a zákon zachování mechanické energie
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
TZM
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

TZM
umime.to/TZM

Nastavení cvičení


Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/TZM

Mechanická energie a zákon zachování mechanické energie

Mechanickou energii dělíme na dvě části. Potenciální (polohovou) E_\mathrm p a kinetickou (pohybovou) E_\mathrm k.

Potenciální energie

Je v homogenním tíhovém poli Země úměrná výšce nad zemí h podle vzorce

E_\mathrm p=mgh.

Není jednoznačná. Záleží na definici nulové výšky (obvykle úroveň podlahy/země). Např. 0,5kg polštář může ze stejného okraje balkonu spadnout:

  • dovnitř balkonu (pak h\approx 1\,\mathrm m a E_\mathrm p\approx 5\,\mathrm J)

  • ven přes okraj a padat 4 patra dolů (pak dává smysl definovat nulovou výšku až na chodníku a tím pádem je h\approx 13\,\mathrm m s E_\mathrm p\approx 65\,\mathrm J).

Kinetická energie

Pro hmotný bod (nebo nerotující těleso) je úměrná druhé mocnině rychlosti:

E_\mathrm k=\frac{1}{2}mv^2

V klidu je tedy nulová.

Kinetická energie balvanu Balvan o m=10\,\mathrm{kg} se uvolnil a valí z kopce.

  • Na začátku má v=0\,\mathrm{m/s} proto je E_\mathrm k=0\,\mathrm J.
  • Po chvíli se rozjede na v=2\,\mathrm{m/s} a má E_\mathrm k=\frac{1}{2}\cdot 10\cdot 2^2\,\mathrm J=20\,\mathrm J.
  • Do údolí dorazí rychlostí v=4\,\mathrm{m/s} a tedy s kinetickou energií E_\mathrm k=\frac{1}{2}\cdot 10\cdot 4^2\,\mathrm J=80\,\mathrm J.

Mechanická energie tělesa a celková mechanická energie soustavy

Mechanickou energií tělesa je součet E_\mathrm k a E_\mathrm p.

Mechanická energie parašutisty Parašutista má v jednu chvíli E_\mathrm p=2400\,\mathrm J (vůči zemi) a E_\mathrm k=400\,\mathrm J

  • Mechanická energie je E_\mathrm p+E_\mathrm k. Tedy 2400 J plus 400 J .
  • Mechanická energie parašutisty je 2800 J.

Celkovou mechanickou energií E soustavy těles je součet mech. energií jednotlivých těles.

Mechanická energie akrobatů ve vzduchu Jeden akrobat má mechanickou energii (součet svých E_\mathrm p+E_\mathrm k) rovnu 900 J. Druhý akrobat 1000 J a třetí 200 J.

  • Celková mechanická energie soustavy je jejich součtem. Tedy 900+1000+200 J.
  • Celková mechanická energie akrobatů je 2100 J.

Zákon zachování mechanické energie

Pokud se mechanická energie nepřeměňuje na jiné formy (např. na tepelnou energii třením) můžeme použít zákon zachování mechanické energie (ZZE). Tento součet se totiž v čase nemění (např. během pohybu, pružných srážek, …). To můžeme zapsat:

Pro jedno těleso: E_\mathrm p+E_\mathrm k=\mathrm{konst.}

Pro dvě tělesa: E_\mathrm {p,1}+E_\mathrm {k,1}+E_\mathrm {p,2}+E_\mathrm {k,2}=\mathrm{konst.}

a tak dále…

Jedno těleso – padající tenisák Tenisák o hmotnosti 0,1 kg upustíme z výšky 2 m na zem. Jaká je jeho kinetická energie 0,4 m nad zemí?

  • Na začátku:

E_\mathrm p=mgh\approx 0{,}1\cdot 10\cdot 2\,\mathrm J=2\,\mathrm J

E_\mathrm k=\frac{1}{2}mv^2=0\,\mathrm J (nulová rychlost v)

celková mech. energie je tedy E=E_\mathrm k+E_\mathrm p=2\,\mathrm J

  • 0,4 m and zemí:

E_\mathrm p=mgh\approx 0{,}1\cdot 10\cdot 0{,}4\,\mathrm J=0{,}4\,\mathrm J

Aby byl stále součet E_\mathrm k+E_\mathrm p roven 2 J, musela E_\mathrm k vzrůst o tolik, o kolik klesla E_\mathrm p. Tedy E_\mathrm k=1{,}6\,\mathrm J.

  • Úpravou vzorce E_\mathrm k=\frac{1}{2}mv^2 bychom pak mohli vypočítat i rychlost (bez počítání rovnic volného pádu).

Jedno těleso – hod oštěpem Jaké výšky mohl dosáhnout 1kg oštěp vržený E_\mathrm k=150\,\mathrm J pokud měl v nejvyšším bodě kinetickou energii jen E_\mathrm k=30\,\mathrm J?

  • E_\mathrm p není zadaná, zřejmě je tedy na začátku hodu prakticky nulová.
  • Snížení E_\mathrm k o 120 J musí podle E_\mathrm k+E_\mathrm p=\mathrm{konst.} znamenat E_\mathrm p=120\,\mathrm J.
  • Z E_\mathrm p=mgh už snadno vyjádříme výšku h=\frac{E_\mathrm p}{mg}\approx\frac{120}{10}\,\mathrm m=12\,\mathrm m

Dvě tělesa – kulečníkové koule

Jedna koule stojí. Druhá s kinetickou energií 2,5 J do ní narazí a zastaví se. Jakou kinetickou energii bude mít první koule?

  • Všechny E_\mathrm p jsou stejné (vůči stolu nulové), můžeme je tedy z rovnic vynechat.
  • Před srážkou: E_\mathrm {k,1}=0\,\mathrm J a E_\mathrm {k,2}=2{,}5\,\mathrm J. Takže E=E_\mathrm {k,1}+E_\mathrm {k,2}=2{,}5\,\mathrm J
  • Po srážce: E_\mathrm {k,1}=? a E_\mathrm {k,2}=0\,\mathrm J
  • Aby zůstal součet obou energií roven 2,5 J, musí být E_\mathrm {k,1} po srážce rovna právě 2,5 J.
Zavřít

Mechanická energie a zákon zachování mechanické energie (střední)

Vyřešeno:

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence